Dr Dimitrios Kollias

Dimitrios Kollias

Lecturer in Artificial Intelligence

School of Electronic Engineering and Computer Science
Queen Mary University of London

Research

multimodal artificial intelligence, machine and deep learning, trustworthy (fair, responsible, explainable and ethical) artificial intelligence, medical imaging

Interests

I am developing and have an interest for creating novel multimodal artificial intelligence, machine and deep learning methods, as well as trustworthy (fair, responsible, explainable and ethical) models, for healthcare & precision medicine. I have worked with different pathologies (cancer, cardiovascular diseases, brain injuries, peridontal diseases, COVID-19 to name a few) and with a broad range of tissue and organs (intestine, liver, kidney, skin, bone, blood vessels and heart, blood-brain barrier, nerve to name a few).

Publications

solid heart iconPublications of specific relevance to Predictive in vitro Models

2024

Tao J, Ghosh S, Lian Z, Cai Z, Schuller BW, Dhall A, Zhao G, Kollias D, Cambria E, Goecke R and Gedeon T (2024). MRAC '24 Chairs' Welcome. MRAC 2024 - Proceedings of the 2nd International Workshop on Multimodal and Responsible Affective Computing   
Arsenos A, Petrongonas E, Filippopoulos O, Skliros C, Kollias D and Kollias S (2024). NEFELI: A deep-learning detection and tracking pipeline for enhancing autonomy in Advanced Air Mobility. Elsevier  Aerospace Science and Technology  109613-109613.  
Miah H, Kollias D, Pedone GL, Provan D and Chen F (2024). Can Machine Learning Assist in Diagnosis of Primary Immune Thrombocytopenia? A Feasibility Study. MDPI  Diagnostics  vol. 14, (13)  
Arsenos A, Karampinis V, Petrongonas E, Skliros C, Kollias D, Kollias S and Voulodimos A (2024). Common Corruptions for Enhancing and Evaluating Robustness in Air-to-Air Visual Object Detection. Institute of Electrical and Electronics Engineers  IEEE Robotics and Automation Letters   
Morani K, Ayana EK, Kollias D and Unay D (2024). COVID‐19 Detection from Computed Tomography Images Using Slice Processing Techniques and a Modified Xception Classifier. Hindawi  International Journal of Biomedical Imaging  vol. 2024, (1)  
Morani K, Ayana EK, Kollias D and Unay D (2024). Detecting COVID-19 in Computed Tomography Images: A Novel Approach Utilizing Segmentation with UNet Architecture, Lung Extraction, and CNN Classifier. Intelligent Computing  Springer Nature   

2023

Kollias D, Vendal K, Gadhavi P and Russom S (2023). BTDNet: A Multi-Modal Approach for Brain Tumor Radiogenomic Classification. MDPI  Applied Sciences  vol. 13, (21)  
Kollias D, Arsenos A and Kollias S (2023). A deep neural architecture for harmonizing 3-D input data analysis and decision making in medical imaging. Elsevier  Neurocomputing  vol. 542,  
Chowdhury D, Das A, Dey A, Banerjee S, Golec M, Kollias D, Kumar M, Kaur G, Kaur R, Arya RC, Wander G, Wander P, Wander GS, Parlikad AK, Gill SS and Uhlig S (2023). CoviDetector: A transfer learning-based semi supervised approach to detect Covid-19 using CXR images. Elsevier BV  BenchCouncil Transactions on Benchmarks, Standards and Evaluations  vol. 3, (2) 100119-100119.  
Salpea N, Tzouveli P and Kollias D (2023). Medical Image Segmentation: A Review of Modern Architectures. Computer Vision – ECCV 2022 Workshops  Springer Nature   

2021

Yu M, Kollias D, Wingate J, Siriwardena N and Kollias S (2021). Machine Learning for Predictive Modelling of Ambulance Calls. MDPI  Electronics  vol. 10, (4)  

2020

Kollias D and Zafeiriou S (2020). Exploiting Multi-CNN Features in CNN-RNN Based Dimensional Emotion Recognition on the OMG in-the-Wild Dataset. Institute of Electrical and Electronics Engineers (IEEE)  IEEE Transactions on Affective Computing  vol. 12, (3) 595-606.  
Kollias D, Cheng S, Ververas E, Kotsia I and Zafeiriou S (2020). Deep Neural Network Augmentation: Generating Faces for Affect Analysis. Springer Nature  International Journal of Computer Vision  vol. 128, (5) 1455-1484.  

2019

Kollias D, Tzirakis P, Nicolaou MA, Papaioannou A, Zhao G, Schuller B, Kotsia I and Zafeiriou S (2019). Deep Affect Prediction in-the-Wild: Aff-Wild Database and Challenge, Deep Architectures, and Beyond. Springer Nature  International Journal of Computer Vision  vol. 127, (6-7) 907-929.  

2018

Tagaris A, Kollias D, Stafylopatis A, Tagaris G and Kollias S (2018). Machine Learning for Neurodegenerative Disorder Diagnosis — Survey of Practices and Launch of Benchmark Dataset. World Scientific Publishing  International Journal of Artificial Intelligence Tools  vol. 27, (03)  

2017

Kollias D, Tagaris A, Stafylopatis A, Kollias S and Tagaris G (2017). Deep neural architectures for prediction in healthcare. Springer Nature  Complex & Intelligent Systems  vol. 4, (2) 119-131.