Prof Karin Hing
BSc, PhD, CEng, MIMMM, FHEA, FRSA, FWESProfessor of Biomaterials and Tissue Regeneration
School of Engineering and Materials Science
Queen Mary University of London
Queen Mary University of London
Research
Biomaterials, Bone graft substitutes, 3D in vitro Bone models, Tissue Engineering, Orthobiologics and Regenerative Medicine, Bone
Interests
Development of 3D in vitro 'Tissue in a Tube' Models for screening of synthetic bone graft substitute safety and efficacy - to inform development of future biomaterial and orthobiologic innovations. The ultimate aim being to develop human ‘cohort specific’ models to innovate tailored interventions through understanding the role that the physico-chemical characteristics of scaffold structures or substrates play in modulating local environments and thus local cell responses and MSK tissue regeneration.Publications
Publications of specific relevance to Predictive in vitro Models
2023
Mafina K, Wilson RM, Rees GJ, Gierth P, Sullivan AC and Hing KA (2023). SSNMR confirms silicate ion substitution in the apatitic structure of 0.8wt% Si hydroxyapatite. Academia.edu Journals Academia Materials Science vol. 1, (1)
Mafina M-K, Wilson R, Rees G, Gierth P, Sullivan A and Hing K (2023). SSNMR confirms silicate ion substitution in the apatitic
structure of 0.8wt% Si hydroxyapatite. Academia materials science
2022
Zhou B, Jiang Y, Guo Q, Das A, Jorge Sobrido A, Hing K, Zayats A and Krause S (2022). Photoelectrochemical Detection of Calcium Ions Based on Hematite Nanorod Sensors. American Chemical Society ACS Applied Nano Materials
2021
Zhou B, Das A, Zhong M, Guo Q, Zhang D-W, Hing KA, Sobrido AJ, Titirici M-M and Krause S (2021). Photoelectrochemical imaging system with high spatiotemporal resolution for visualizing dynamic cellular responses. Elsevier Biosensors and Bioelectronics vol. 180,
2020
Hexter AT, Hing KA, Haddad FS and Blunn G (2020). Decellularized porcine xenograft for anterior cruciate ligament reconstruction: A histological study in sheep comparing cross-pin and cortical suspensory femoral fixation. The British Editorial Society of Bone & Joint Surgery Bone and Joint Research vol. 9, (6) 293-301.
2019
Wu F, Zhou B, Wang J, Zhong M, Das A, Watkinson M, Hing K, Zhang D-W and Krause S (2019). Photoelectrochemical Imaging System for the Mapping of Cell Surface Charges. Anal Chem
2017
Mafina MK, Sullivan AC and Hing KA (2017). Use of a fluorescent probe to monitor the enhanced affinity of rh-BMP-2 to silicated-calcium phosphate synthetic bone graft substitutes under competitive conditions. Materials Science and Engineering C vol. 80, 207-212.
Sriranganathan D, Chen X, Hing KA, Kanwal N and Hill RG (2017). The effect of the incorporation of fluoride into strontium containing bioactive glasses. Journal of Non-Crystalline Solids vol. 457, 25-30.
2016
Campion C and Hing KA (2016). Porous Bone Graft Substitutes. Mechanobiology Wiley
Coathup MJ, Blunn GW, Campion C, Ho C-Y and Hing KA (2016). The effect of increased microporosity on bone formation within silicate-substituted scaffolds in an ovine posterolateral spinal fusion model. J Biomed Mater Res B Appl Biomater vol. 105, (4) 805-814.
2015
Sriranganathan D, Kanwal N, Hing KA and Hill RG (2015). Strontium substituted bioactive glasses for tissue engineered scaffolds: the importance of octacalcium phosphate. Springer Nature Journal of Materials Science: Materials in Medicine vol. 27, (2)
Hutchens SA, Campion C, Assad M, Chagnon M and Hing KA (2015). Efficacy of silicate-substituted calcium phosphate with enhanced strut porosity as a standalone bone graft substitute and autograft extender in an ovine distal femoral critical defect model. J Mater Sci Mater Med vol. 27, (1) 20-20.
Shah FA, Brauer DS, Hill RG and Hing KA (2015). Apatite formation of bioactive glasses is enhanced by low additions of fluoride but delayed in the presence of serum proteins. Elsevier Materials Letters vol. 153, 143-147.
2014
Shah FA, Brauer DS, Desai N, Hill RG and Hing KA (2014). Fluoride-containing bioactive glasses and Bioglass® 45S5 form apatite in low pH cell culture medium. Materials Letters vol. 119, 96-99.
Shah FA, Brauer DS, Wilson RM, Hill RG and Hing KA (2014). Influence of cell culture medium composition on in vitro dissolution behavior of a fluoride-containing bioactive glass. Journal of Biomedical Materials Research - Part A vol. 102, (3) 647-654.
2013
Castagna V, Olivares-Navarrete R, Schwartz Z, Boyan BD and Hing KA (2013). HMSC proliferation and differentiation are dependent on chemistry and surface roughness of calcium phosphate bone substitutes. European Cells and Materials vol. 26, (SUPPL. 3)
Campion CR, Ball SL, Clarke DL and Hing KA (2013). Microstructure and chemistry affects apatite nucleation on calcium phosphate bone graft substitutes. Journal of Materials Science: Materials in Medicine vol. 24, (3) 597-610.
Mafina M-K, Hing KA and Sullivan AC (2013). Development of novel fluorescent probes for the analysis of protein interactions under physiological conditions with medical devices. Langmuir vol. 29, (5) 1420-1426.
Ghani Y, Coathup MJ, Hing KA and Blunn GW (2013). Antibacterial effect of incorporating silver ions in electrochemically deposited hydroxyapatite coating: An experimental study. JRSM Short Rep vol. 4, (9)
Hing KA (2013). Biomimetic bone regeneration.
Hing KA (2013). 8 Biomimetic bone regeneration. Biomimetic Biomaterials Elsevier
Ruys A, Tampieri A, Sprio S, Ehrlich H, Rabiei R, Dastjerdi AK, Mirkhalaf M, Barthelat F, Chánová EM, Rypáček F, Boughton P, Roger G, Rohanizadeh R, Mason RS, Boughton E, McLennan SV, Le Bao Ha T, Hing KA, Zhu J, Hu J, Marchant RE and Campbell D (2013). Contributor contact details. Biomimetic Biomaterials Elsevier
2012
Coathup MJ, Hing KA, Samizadeh S, Chan O, Fang YS, Campion C, Buckland T and Blunn GW (2012). Effect of increased strut porosity of calcium phosphate bone graft substitute biomaterials on osteoinduction. Journal of Biomedical Materials Research - Part A vol. 100 A, (6) 1550-1555.
Ghani Y, Coathup MJ, Hing KA and Blunn GW (2012). Development of a hydroxyapatite coating containing silver for the prevention of peri-prosthetic infection. J Orthop Res vol. 30, (3) 356-363.
Chan O, Coathup MJ, Nesbitt A, Ho CY, Hing KA, Buckland T, Campion C and Blunn GW (2012). The effects of microporosity on osteoinduction of calcium phosphate bone graft substitute biomaterials. Acta Biomaterialia vol. 8, (7) 2788-2794.
Ozad U, Parish A and Hing KA (2012). Bioactivity And Bone Formation In Silicon-Substituted Hydroxyapatite. LookUs Bilisim Sakarya University Journal of Science vol. 16, (3) 170-177.
2011
Coathup MJ, Samizadeh S, Fang YS, Buckland T, Hing KA and Blunn GW (2011). The osteoinductivity of silicate-substituted calcium phosphate. J Bone Joint Surg Am vol. 93, (23) 2219-2226.
Parish A, Davis G and Hing K (2011). The quantitative and qualitative analysis bone ingrowth network quality of hydroxyapatite implants over time to investigate the process of internal bone growth via novel automated 3D image processing. 24th European Conference on Biomaterials - Annual Conference of the European Society for Biomaterials
Castagna V, Sullivan A and Hing K (2011). Fibronectin adsorption to stoichiometric and silicate substituted hydroxyapatite sensitive to FN concentration and presence of serum proteins. 24th European Conference on Biomaterials - Annual Conference of the European Society for Biomaterials
Guth K, Campion C, Buckland T and Hing KA (2011). Effects of serum protein on ionic exchange between culture medium and microporous hydroxyapatite and silicate-substituted hydroxyapatite. Journal of Materials Science: Materials in Medicine vol. 22, (10) 2155-2164.
Campion CR, Chander C, Buckland T and Hing K (2011). Increasing strut porosity in silicate-substituted calcium-phosphate bone graft substitutes enhances osteogenesis. Journal of Biomedical Materials Research - Part B Applied Biomaterials vol. 97 B, (2) 245-254.
Castagna V, Sullivan A and Hing KA (2011). Behaviour of fibronectin on interaction with stoichiometric and silicate substituted hydroxyapatite bone graft substitiutes. European Cells and Materials vol. 22, (SUPPL.2)
Mafina MK, Sullivan AC and Hing KA (2011). Recording and evaluating the effect of silicon-substitution on protein adsorption/desorption to hydroxyapatite. European Cells and Materials vol. 22, (SUPPL.2)
Parish AJB, Davis GR and Hing KA (2011). Automated computation of 3D histomorphometry within implanted hydroxyapatite porous scaffolds. European Cells and Materials vol. 22, (SUPPL.2)
2010
Hing K (2010). Tissue engineering. MATER WORLD vol. 18, (9) 28-30.
Guth K, Campion C, Buckland T and Hing KA (2010). Surface physiochemistry affects protein adsorption to stoichiometric and silicate-substituted microporous hydroxyapatites. Advanced Engineering Materials vol. 12, (4)
Guth K, Campion C, Buckland T and Hing KA (2010). Effect of silicate-substitution on attachment and early development of human osteoblast-like cells seeded on microporous hydroxyapatite discs. Advanced Engineering Materials vol. 12, (1-2)
2009
Mafina MK, Sullivan AC and Hing KA (2009). Monitoring the effect of silicate substitution on protein adsorption/desorption to hydroxyapatite. European Cells and Materials vol. 18, (SUPPL. 2)
2008
Samizadeh S, Amogbokpa J, Fang SC, Coathup MJ, Hing KA, Buckland T and Blunn GW (2008). Osseoinduction by calcium phosphate bone substitutes is a function of chemical composition and structure. 8th World Biomaterials Congress 2008 vol. 2,
Hing KA (2008). Biomaterials - Where biology, physics, chemistry, engineering and medicine meet. Journal of Physics: Conference Series vol. 105, (1)
Rashid N, Harding I, Buckland T and HING KA (2008). Nano-scale manipulation of silicate-substituted apatite chemistry impacts surface charge, hydrophilicity, protein adsorption and cell attachment., Editors: Meenan BJ and Boyd AR. International Journal of Nano and Biomaterials vol. 1, (3) 299-319.
2007
Hing KA, Wilson LF and Buckland T (2007). Comparative performance of three ceramic bone graft substitutes. Spine J vol. 7, (4) 475-490.
2006
Hing KA, Revell PA, Smith N and Buckland T (2006). Effect of silicon level on rate, quality and progression of bone healing within silicate-substituted porous hydroxyapatite scaffolds. Biomaterials vol. 27, (29) 5014-5026.
De Carlos A, Lusquinos F, Pou J, Leon B, Perez-Amor M, Driessens FCM, HING KA, Best S and Bonfield W (2006). In vitro testing of Nd : YAG laser processed calcium phosphate coatings. Journal of Materials Science Materials in Medicine vol. 17, (11) 1153-1160.
2005
Harding IS, Rashid N and Hing KA (2005). Surface charge and the effect of excess calcium ions on the hydroxyapatite surface. Biomaterials vol. 26, (34) 6818-6826.
Mehta JS, Futter CE, Sandeman SR, Faragher RGAF, Hing KA, Tanner KE and Allan BDS (2005). Hydroxyapatite promotes superior keratocyte adhesion and proliferation in comparison with current keratoprosthesis skirt materials. BRIT J OPHTHALMOL vol. 89, (10) 1356-1362.
HING KA, Annaz B, Saeed S, Revell PA and Buckland T (2005). Microporosity enhances bioactivity of synthetic bone graft substitutes. Journal of Materials Science Materials in Medicine vol. 16, (5) 467-475.
Hing KA (2005). Bioceramic bone graft substitutes: Influence of porosity and chemistry. INT J APPL CERAM TEC vol. 2, (3) 184-199.
2004
Hing KA (2004). Bone repair in the twenty-first century: biology, chemistry or engineering? Philos Trans A Math Phys Eng Sci vol. 362, (1825) 2821-2850.
Rashid N, Harding I and Hing KA (2004). Effect of silicate substitution on the surface charge of hydroxyapatite. Transactions - 7th World Biomaterials Congress
Hing KA, Saeed S, Annaz B, Buckland T and Revell PA (2004). Bone development is sensitive to silicon level in substituted apatites. Transactions - 7th World Biomaterials Congress
Hing KA, Saeed S, Annaz B, Buckland T and Revell PA (2004). Microporosity enhances bioactivity of synthetic bone graft substitutes. Transactions - 7th World Biomaterials Congress
Saeed S, Hing K and Revell PA (2004). HA activates T cells and causes inflammation in liver and spleen from rabbits following intraosseous implantation. Transactions - 7th World Biomaterials Congress
Annaz B, Hing KA, Kayser M, Buckland T and Di Silvio L (2004). The role of microporosity in synthetic porous ceramics. Transactions - 7th World Biomaterials Congress
Annaz B, Hing KA, Kayser M, Buckland T and Di Silvio L (2004). An ultrastructural study of cellular response to variation in porosity in phase-pure hydroxyapatite. J Microsc vol. 216, (Pt 2) 97-109.
Annaz B, Hing KA, Kayser M, Buckland T and Di Silvio L (2004). Porosity variation in hydroxyapatite and osteoblast morphology: a scanning electron microscopy study. J Microsc vol. 215, (Pt 1) 100-110.
HING KA, Tanner KE, Best SM, Bonfield W and Revell PA (2004). Mediation of bone ingrowth in porous hydroxyaptite bone graft substitutes. Journal of Biomedical Materials Research vol. 68A, 187-200.
HING KA, Revell PA, McInness T and Damien E (2004). Novel Bioceramic Foams For Bone Grafting. Journal of Bone & Joint Surgery - British Volume vol. 86-B Suppl I:II,
Hing KA, Best SM, Tanner KE, Bonfield W and Revell PA (2004). Mediation of bone ingrowth in porous hydroxyapatite bone graft substitutes. J Biomed Mater Res A vol. 68, (1) 187-200.
2003
Damien E, Hing K, Saeed S and Revell PA (2003). A preliminary study on the enhancement of the osteointegration of a novel synthetic hydroxyapatite scaffold in vivo. J Biomed Mater Res A vol. 66, (2) 241-246.
Lusquiños F, De Carlos A, Pou J, Arias JL, Boutinguiza M, León B, Pérez-Amor M, Driessens FCM, Hing K, Gibson I, Best S and Bonfield W (2003). Calcium phosphate coatings obtained by Nd:YAG laser cladding: physicochemical and biologic properties. J Biomed Mater Res A vol. 64, (4) 630-637.
2002
Patel N, Best SM, Bonfield W, Gibson IR, Hing KA, Damien E and Revell PA (2002). A comparative study on the in vivo behavior of hydroxyapatite and silicon substituted hydroxyapatite granules. J Mater Sci Mater Med vol. 13, (12) 1199-1206.
2001
Damien E, MacInnes T, Hing K and Revell PA (2001). Insulin like growth factor (IGF-I) increases the bioactivity of porous hydroxyapatite (PHA) in vivo in rabbits. J PATHOL vol. 193, 6A-6A.
1999
Hing KA, Best SM and Bonfield W (1999). Characterization of porous hydroxyapatite. J Mater Sci Mater Med vol. 10, (3) 135-145.
Di Silvio L, Hing K and Bonfield W (1999). Macroporous hydroxyapatites: Potential drug delivery systems. Proceedings of the Controlled Release Society (26) 1152-1153.
Hing KA, Best SM, Tanner KE, Bonfield W and Revell PA (1999). Quantification of bone ingrowth within bone-derived porous hydroxyapatite implants of varying density. J Mater Sci Mater Med vol. 10, (10/11) 663-670.
1998
Hing KA, Best SM, Tanner KE, Revell PA and Bonfield W (1998). Histomorphological and biomechanical characterization of calcium phosphates in the osseous environment. Proc Inst Mech Eng H vol. 212, (6) 437-451.
1997
Hing KA, Best SM, Tanner KE, Bonfield W and Revell PA (1997). Biomechanical assessment of bone ingrowth in porous hydroxyapatite. J Mater Sci Mater Med vol. 8, (12) 731-736.
1996
Hing KA, Best SM, Revell PA, Tanner KE and Bonfield W (1996). Histomorphometric and biomechanical assessment of bone ingrowth in porous hydroxyapatite. Transactions of the Annual Meeting of the Society for Biomaterials in conjunction with the International Biomaterials Symposium vol. 2,
HING KA (1996). Assessment of porous hydroxyapatite for bone replacement., Editors: Best SM and Bonfield W.
Grants
3D perfusion bioreactor studentship Baxter - EPSRC DTP CASE Conversion 2021
Karin Hing
£30,000 Baxter Healthcare Corporation (21-09-2021 - 20-09-2025)
Karin Hing
£30,000 Baxter Healthcare Corporation (21-09-2021 - 20-09-2025)
Bioresorbable bioactive composites Kick off
Karin Hing and Emiliano Bilotti
£50,243 Baxter Healthcare Corporation (11-01-2021 - 22-01-2025)
Karin Hing and Emiliano Bilotti
£50,243 Baxter Healthcare Corporation (11-01-2021 - 22-01-2025)
KTP AKT (QMUL-Lucideon) - Radio Opaque Cements and Osteoclast Testing: Traceable Bio-Remodellable Cements
Karin Hing and Simon Rawlinson
£41,283 Innovate UK (25-03-2024 - 24-07-2024)
Karin Hing and Simon Rawlinson
£41,283 Innovate UK (25-03-2024 - 24-07-2024)
KTP with Lucideon: Cell testing to assist development of novel biomaterials
Karin Hing and Simon Rawlinson
£256,237 Innovate UK (17-02-2021 - 17-02-2024)
Karin Hing and Simon Rawlinson
£256,237 Innovate UK (17-02-2021 - 17-02-2024)
Bioactive bioresorbable composites for load bearing guided bone regeneration
Karin Hing
£29,000 Baxter Healthcare Corporation (01-10-2020 - 30-09-2024)
Karin Hing
£29,000 Baxter Healthcare Corporation (01-10-2020 - 30-09-2024)
Development of mechanically enhanced osteoinductive synthetic bone graft substitutes
Karin Hing
£87,500 Apatech Ltd (01-10-2017 - 31-03-2022)
Karin Hing
£87,500 Apatech Ltd (01-10-2017 - 31-03-2022)
Doctoral Educational Research Agreement
Karin Hing
£79,714 Baxter Healthcare Corporation (01-01-2015 - 31-03-2022)
Karin Hing
£79,714 Baxter Healthcare Corporation (01-01-2015 - 31-03-2022)